CHEMISTRY IN ACTION ON DNA: MOLECULAR TOOLS FOR TARGETING AND IMAGING NUCLEIC ACID STRUCTURES

Marie-Paule TEULADE-FICHOU
Institut Curie, Research unit Chemistry Modelling and Imaging for Biology (CMIB), CNRS UMR 9187-INSERM U1196, Université Paris-Sud 91405 Orsay, France.

For many years our research efforts have been focused on the design of structure and fluorescence probes for targeting and imaging nucleic acids. Our targets are more specifically alternative secondary structures such as G-quadruplexes that can be found in G-rich regions as well as local pairing defects such as base mismatches that result from base misincorporation or chemical damages. These alternative structures are involved in various genomic dysfunctions and may ultimately cause genetic instability related to cancer development. Our aim is to provide chemical biology tools for better understanding the roles of these structures and their processing by proteins. In parallel targeted probes may enable identification of prototype scaffolds for anticancer drug development.

Along these lines, we have developed a number of new heterocyclic scaffolds that have been engineered to display on the one hand selective recognition of the target DNA structure and on the other hand a switchable fluorescence emission acting as reporter. Selected examples illustrating our main achievements in the field will be described:

1) Design of bisquinolinium scaffolds acting as G-quadruplex DNA probes [1,5]
2) Design of Cyclobismacrocycles binding to homopyrimidine mismatches [6,8]
3) Design of Vinyl-Triphenylamine dyes shaped for two-photon absorption and AT-rich regiospecificity.[9,11]

In each case, we will give a short overview of the synthetic approaches, the structure of the interaction with DNA identified by NMR or modelling and the practical applications for in vitro analysis and in-cell probing.

References: